一、ZhihuRec数据集介绍
ZhihuRec数据集由 清华大学信息检索组(THUIR)和 知乎公司 共同构建,仅供研究使用。ZhihuRec 数据集是从知识共享平台(知乎)收集的,该平台由 10 天内收集的约 一亿(100M) 次交互、798K 用户、165K 问题、554K 答案、240K 作者、70K 主题和超过 501K 用户查询日志组成。还有用户、答案、问题、作者和主题的描述,这些都是匿名的。据我们所知,这是用于个性化推荐的最大的真实世界交互数据集。由于ZhihuRec数据集包含约100M的用户回答印象日志,因此也称为ZhihuRec-100M。还构建了从 ZhihuRec-100M 数据集随机采样的两个较小的数据集,分别称为 ZhihuRec-20M 和 ZhihuRec-1M,以满足各种应用需求。它们包含大约 20M 和 1M 的用户回答印象日志,可以看作是一个中等大小的数据集和一个相对较小的数据集。
ZhihuRec项目及下载地址
https://github.com/THUIR/ZhihuRec-Dataset https://cloud.tsinghua.edu.cn/d/d6c045c55aa14bb39ebc/
二、数据集详情
2.1 数据集内的文件
Filename | Size | Description |
---|---|---|
inter_impression.csv | 2.6GB | user clicks and impressions |
inter_query.csv | 111MB | user queries |
info_user.csv | 135MB | the features of the users occured in the dataset |
info_answer.csv | 917MB | the features of the answers occured in the dataset |
info_question.csv | 14MB | the features of the questions occured in the dataset |
info_author.csv | 3.1MB | the features of the authors occured in the dataset |
info_topic.csv | 413KB | the IDs of the topics occured in the dataset |
info_token.csv | 409MB | the features of the tokens occured in the dataset |
2.2 数据集统计信息
Dataset | ZhihuRec-100M | ZhihuRec-20M | ZhihuRec-1M |
---|---|---|---|
#impressions * | 99,978,523 | 19,999,857 | 999,970 |
#clicks | 26,981,583 | 5,402,345 | 268,656 |
#clicks : #non-clicks | 1 : 2.71 | 1 : 2.70 | 1 : 2.72 |
#queries * | 3,899,553 | 776,201 | 38,422 |
#users * | 798,086 | 159,642 | 7,974 |
avg #impressions per user | 125.27 | 125.28 | 125.40 |
avg #clicks per user | 33.81 | 33.84 | 33.69 |
#users with queries | 501,893 | 100,271 | 5,047 |
avg #queries per user | 7.77 | 7.74 | 7.61 |
#answers * | 554,976 | 343,103 | 81,563 |
#questions * | 165,012 | 104,130 | 29,340 |
#authors * | 240,956 | 167,796 | 47,888 |
#topics * | 72,318 | 54,785 | 22,897 |
#tokens * | 556,546 | 428,334 | 249,586 |
2.3 数据集字段
Some fields in the data set are null, which are represented by empty strings in the file.
inter_impression.csv
Index | Nullable | Description |
---|---|---|
0 | user ID | |
1 | answer ID | |
2 | impression timestamp | |
3 | click timestamp (0 for non-click) |
inter_query.csv
Index | Nullable | Description |
---|---|---|
0 | user ID | |
1 | token IDs in the query (separated by spaces) | |
2 | query timestamp |
info_user.csv
Index | Nullable | Description |
---|---|---|
0 | user ID | |
1 | register timestamp | |
2 | gender | |
3 | login frequency | |
4 | #followers | |
5 | #topics followed by this user | |
6 | #questions followed by this user | |
7 | #answers | |
8 | #questions | |
9 | #comments | |
10 | #thanks received by this user | |
11 | #comments received by this user | |
12 | #likes received by this user | |
13 | #dislikes received by this user | |
14 | register type | |
15 | register platform | |
16 | from android or not | |
17 | from iphone or not | |
18 | from ipad or not | |
19 | from pc or not | |
20 | from mobile web or not | |
21 | device model | |
22 | device brand | |
23 | platform | |
24 | province | |
25 | city | |
26 | topic IDs followed by this user (separated by spaces) |
info_answer.csv
Index | Nullable | Description |
---|---|---|
0 | answer ID | |
1 | question ID | |
2 | anonymous or not | |
3 | author ID (null for anonymous) | |
4 | labeled high-value answer or not | |
5 | recommended by the editor or not | |
6 | create timestamp | |
7 | contain pictures or not | |
8 | contain videos or not | |
9 | #thanks | |
10 | #likes | |
11 | #comments | |
12 | #collections | |
13 | #dislikes | |
14 | #reports | |
15 | #helpless | |
16 | token IDs in the answer (separated by spaces) | |
17 | topic IDs of the answer (separated by spaces) |
info_question.csv
Index | Nullable | Description |
---|---|---|
0 | question ID | |
1 | create timestamp | |
2 | #answers | |
3 | #followers | |
4 | #invitations | |
5 | #comments | |
6 | token IDs in the question (separated by spaces) | |
7 | topic IDs of the queation (separated by spaces) |
info_author.csv
Index | Nullable | Description |
---|---|---|
0 | author ID | |
1 | is excellent author or not | |
2 | #followers | |
3 | is excellent answerer or not |
info_topic.csv
Index | Nullable | Description |
---|---|---|
0 | topic ID |
info_token.csv
Index | Nullable | Description |
---|---|---|
0 | token ID * | |
1 | word vector trained by word2vec (64 dimensions, separated by spaces) |
* ZhihuRec can't provide the corresponding text of tokens for privacy reasons. Researchers can use word vectors in the dataset or train word vectors from scratch.
引用说明
ZhihuRec dataset can be downloaded from here, and it is for the paper:
Bin Hao, Min Zhang, Weizhi Ma, Shaoyun Shi, Xinxing Yu, Houzhi Shan, Yiqun Liu and Shaoping Ma, 2021, A Large-Scale Rich Context Query and Recommendation Dataset in Online Knowledge-Sharing. arXiv preprint arXiv:2106.06467.
please cite the paper if you use this dataset:
@misc{hao2021largescale,
title={A Large-Scale Rich Context Query and Recommendation Dataset in Online Knowledge-Sharing},
author={Bin Hao and Min Zhang and Weizhi Ma and Shaoyun Shi and Xinxing Yu and Houzhi Shan and Yiqun Liu and Shaoping Ma},
year={2021},
eprint={2106.06467},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
精选文章
管理世界 | 用正则表达式、文本向量化、线性回归算法从md&a数据中计算 「企业融资约束指标」
可视化 | 词嵌入模型用于计算社科领域刻板印象等信息(含代码)
管理世界 | 用正则表达式、文本向量化、线性回归算法从md&a数据中计算 「企业融资约束指标」
可视化 | 词嵌入模型用于计算社科领域刻板印象等信息(含代码)