用 Python 高效处理大文件

Python中文社区

共 5298字,需浏览 11分钟

 · 2022-07-27


为了进行并行处理,我们将任务划分为子单元。它增加了程序处理的作业数量,减少了整体处理时间。

例如,如果你正在处理一个大的CSV文件,你想修改一个单列。我们将把数据以数组的形式输入函数,它将根据可用的进程数量,一次并行处理多个值。这些进程是基于你的处理器内核的数量。

在这篇文章中,我们将学习如何使用multiprocessingjoblibtqdm Python包减少大文件的处理时间。这是一个简单的教程,可以适用于任何文件、数据库、图像、视频和音频。

开始

我们将使用来自 Kaggle 的 US Accidents (2016 - 2021) 数据集,它包括280万条记录和47个列。

https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents

我们将导入multiprocessingjoblibtqdm用于并行处理,pandas用于数据导入,renltkstring用于文本处理。

# Parallel Computing import multiprocessing as mp
from joblib import Parallel, delayed
from tqdm.notebook import tqdm
# Data Ingestion
import pandas as pd
# Text Processing
import re
from nltk.corpus import stopwords
import string

在我们开始之前,让我们通过加倍cpu_count()来设置n_workers。正如你所看到的,我们有8个workers

n_workers = 2 * mp.cpu_count()
print(f"{n_workers} workers are available")
>>> 8 workers are available

下一步,我们将使用pandas read_csv函数读取大型CSV文件。然后打印出dataframe的形状、列的名称和处理时间。

%%timefile_name="../input/us-accidents/US_Accidents_Dec21_updated.csv"df = pd.read_csv(file_name)
print(f"Shape:{df.shape}\n\nColumn Names:\n{df.columns}\n")

输出:

Shape:(2845342, 47)
Column Names:
Index(['ID', 'Severity', 'Start_Time', 'End_Time', 'Start_Lat', 'Start_Lng','End_Lat', 'End_Lng', 'Distance(mi)', 'Description', 'Number', 'Street','Side', 'City', 'County', 'State', 'Zipcode', 'Country', 'Timezone','Airport_Code', 'Weather_Timestamp', 'Temperature(F)', 'Wind_Chill(F)','Humidity(%)', 'Pressure(in)', 'Visibility(mi)', 'Wind_Direction','Wind_Speed(mph)', 'Precipitation(in)', 'Weather_Condition', 'Amenity','Bump', 'Crossing', 'Give_Way', 'Junction', 'No_Exit', 'Railway','Roundabout', 'Station', 'Stop', 'Traffic_Calming', 'Traffic_Signal','Turning_Loop', 'Sunrise_Sunset', 'Civil_Twilight', 'Nautical_Twilight','Astronomical_Twilight'],dtype='object')
CPU times: user 33.9 s, sys: 3.93 s, total: 37.9 sWall time: 46.9 s

处理文本

clean_text是一个用于处理文本的简单函数。我们将使用nltk.copus获得英语停止词,并使用它来过滤掉文本行中的停止词。之后,我们将删除句子中的特殊字符和多余的空格。它将成为确定串行、并行和批处理的处理时间的基准函数。

def clean_text(text):   # Remove stop words  stops = stopwords.words("english")  text = " ".join([word for word in text.split() if word  not in stops])  # Remove Special Characters  text = text.translate(str.maketrans('', '', string.punctuation))  # removing the extra spaces  text = re.sub(' +',' ', text)  return text

串行处理

对于串行处理,我们可以使用pandas的.apply()函数,但是如果你想看到进度条,你需要为pandas激活tqdm,然后使用.progress_apply()函数。

我们将处理280万条记录,并将结果保存回 “Description” 列中。

%%timetqdm.pandas()
df['Description'] = df['Description'].progress_apply(clean_text)

输出

高端处理器串行处理280万行花了9分5秒。

100% 🟩🟩🟩🟩 2845342/2845342 [09:05<00:00, 5724.25it/s]
CPU times: user 8min 14s, sys: 53.6 s, total: 9min 7sWall time: 9min 5s

多进程处理

有多种方法可以对文件进行并行处理,我们将了解所有这些方法。multiprocessing是一个内置的python包,通常用于并行处理大型文件。

我们将创建一个有8个workers的多处理池,并使用map函数来启动进程。为了显示进度条,我们将使用tqdm

map函数由两部分组成。第一个部分需要函数,第二个部分需要一个参数或参数列表。

%%timep = mp.Pool(n_workers) 
df['Description'] = p.map(clean_text,tqdm(df['Description']))

输出

我们的处理时间几乎提高了3倍。处理时间从9分5秒下降到3分51秒。

100% 🟩🟩🟩🟩 2845342/2845342 [02:58<00:00, 135646.12it/s]
CPU times: user 5.68 s, sys: 1.56 s, total: 7.23 sWall time: 3min 51s

并行处理

我们现在将学习另一个Python包来执行并行处理。在本节中,我们将使用joblibParalleldelayed来复制map函数。

  • Parallel需要两个参数:n_job = 8backend = multiprocessing

  • 然后,我们将在delayed函数中加入clean_text

  • 创建一个循环,每次输入一个值。

下面的过程是相当通用的,你可以根据你的需要修改你的函数和数组。我曾用它来处理成千上万的音频和视频文件,没有任何问题。

建议:使用 "try: ""except: "添加异常处理。

def text_parallel_clean(array):  result = Parallel(n_jobs=n_workers,backend="multiprocessing")(  delayed(clean_text)  (text)   for text in tqdm(array)  )  return result

text_parallel_clean()中添加“Description”列。

%%timedf['Description'] = text_parallel_clean(df['Description'])

输出

我们的函数比多进程处理Pool多花了13秒。即使如此,并行处理也比串行处理快4分59秒。

100% 🟩🟩🟩🟩 2845342/2845342 [04:03<00:00, 10514.98it/s]
CPU times: user 44.2 s, sys: 2.92 s, total: 47.1 sWall time: 4min 4s

并行批量处理

有一个更好的方法来处理大文件,就是把它们分成若干批,然后并行处理。让我们从创建一个批处理函数开始,该函数将在单一批次的值上运行clean_function

批量处理函数

def proc_batch(batch):  return [  clean_text(text)  for text in batch  ]

将文件分割成批

下面的函数将根据workers的数量把文件分成多个批次。在我们的例子中,我们得到8个批次。

def batch_file(array,n_workers):  file_len = len(array)  batch_size = round(file_len / n_workers)  batches = [  array[ix:ix+batch_size]  for ix in tqdm(range(0, file_len, batch_size))  ]  return batches
batches = batch_file(df['Description'],n_workers)
>>> 100% 8/8 [00:00<00:00, 280.01it/s]

运行并行批处理

最后,我们将使用Paralleldelayed来处理批次。

%%timebatch_output = Parallel(n_jobs=n_workers,backend="multiprocessing")(  delayed(proc_batch)  (batch)   for batch in tqdm(batches)  )
df['Description'] = [j for i in batch_output for j in i]

输出

我们已经改善了处理时间。这种技术在处理复杂数据和训练深度学习模型方面非常有名。

100% 🟩🟩🟩🟩 8/8 [00:00<00:00, 2.19it/s]
CPU times: user 3.39 s, sys: 1.42 s, total: 4.81 sWall time: 3min 56s

tqdm 并发

tqdm将多处理带到了一个新的水平。它简单而强大。

process_map需要:

  • 函数名称
  • Dataframe 列名
  • max_workers
  • chucksize与批次大小类似。我们将用workers的数量来计算批处理的大小,或者你可以根据你的喜好来添加这个数字。
%%timefrom tqdm.contrib.concurrent import process_mapbatch = round(len(df)/n_workers)
df['Description'] = process_map(clean_text,df['Description'], max_workers=n_workers, chunksize=batch)

输出

通过一行代码,我们得到了最好的结果:

100% 🟩🟩🟩🟩 2845342/2845342 [03:48<00:00, 1426320.93it/s]
CPU times: user 7.32 s, sys: 1.97 s, total: 9.29 sWall time: 3min 51s

结论

我们需要找到一个平衡点,它可以是串行处理,并行处理,或批处理。如果你正在处理一个较小的、不太复杂的数据集,并行处理可能会适得其反。

在这个教程中,我们已经了解了各种处理大文件的Python包,它们允许我们对数据函数进行并行处理。

如果你只处理一个表格数据集,并且想提高处理性能,那么建议你尝试DaskdatatableRAPIDS

- 点击下方阅读原文加入社区会员 

浏览 36
点赞
评论
收藏
分享

手机扫一扫分享

举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

举报