首页 文章详情

七月组队学习计划!

Datawhale | 152 2022-07-09 05:11 0 0 0
UniSMS (合一短信)
 Datawhale学习 
贡献者:Datawhale团队

本月组队学习,包含了人工智能、数据科学、基础编程3个模块,共12个学习内容。

开源学习联盟

由高校学生、老师、协会等共同参与成立,在数据科学和人工智能方向,倡导开源学习,通过开放协作的学习方式,帮助在校学生找到有意义的工作,建立有意义的人际关系。


中南大学计算机学院科协

厦门大学WISERCLUB
浙江大学人工智能协会
华东理工大学创新创业协会

闽江学院数学建模协会

西安电子科技大学科创社

重庆邮电大学软件工程学院

南通师范高等专科学校科技创新社

华北电力大学大数据与哲学社会科学实验室

华北电力大学LSGO软件技术团队

关于开源

Datawhale作为开源组织,更多是希望营造互促的学习氛围和纯粹的学习环境,所有学习内容和学习规划都将开源在Datawhale Github上(地址见下方),方便大家有监督和无监督学习,从而帮助到更多学习者成长。

开源内容

截止今日,Datawhale已经开源50多门学习内容,涉及编程、数据科学、cv、nlp、强化学习和推荐系统6大模块,这源自每一个开源贡献者的参与。

开源地址

https://github.com/datawhalechina/team-learning

什么是组队学习?

顾名思义,就是一群志同道合的小伙伴,一起学习讨论,一起克服拖延症,一起组队打boss。没有老师,没有教学,有的是一群热爱学习和渴望改变的人,交流学习,互促共进。或许你可以从这些文章进一步了解黄元帅:组队学习的大航海模型闻韶:我的组队学习经历》、《罗如意:从学习者到贡献者


开源教程

人工智能(含机器学习、深度学习)

1 /吃瓜教程—西瓜书+南瓜书


开源贡献:谢文睿、秦州、卢水琼

内容说明:周志华老师的“西瓜书”是机器学习经典入门教材,值得反复阅读,配合“南瓜书”从本科数学基础的视角进行讲解,一起打好基础!详细介绍点这里

学习周期:18天

定位人群:有高数、线代、概率论与数理统计基础的同学
学习名额:180人
⚠️ 配套讲解视频已上传至B站,地址见文末「快速通道」

任务节选


‍‍‍‍‍‍‍‍Task02:概览西瓜书、南瓜书第3章(6天)

  • 《机器学习》第3章

  • 涉及的线性回归等数学难点‍‍‍‍‍‍‍‍



2 /李宏毅机器学习(含深度学习)


开源贡献:王茂霖、陈安东、刘峥嵘、李玲、吕豪杰、叶前坤、吴建新

内容说明:辅助大家更好学习李宏毅老师机器学习视频,并加入相关补充资料,帮助你对机器学习有更加深刻的理解。

学习周期:14天

定位人群:深度学习初学者,有微积分,线性代数基础
学习名额:100人

任务节选


Task04:深度学习介绍和反向传播机制(2天)

  • 了解深度学习的基础知识

  • 熟悉反向传播机制



3 /深入浅出PyTorch


开源贡献李嘉骐、牛志康、刘洋、陈安东、隆军、陈鑫、刘晓东、曹志宾、杨沁瑜

内容说明:PyTorch理论与实践结合,由基础知识到项目实战。详细介绍点这里

学习周期14天

定位人群具备高数、线代、概率论基础,有一定的机器学习和深度学习基础,熟悉常见概念,会使用Python。

学习名额100人

任务节选


Task01:PyTorch的安装和基础知识(2天)



4 /采蘑菇教程—Easy-RL:强化学习


开源贡献:王琦、杨毅远、江季、梁恩瑞、汪聪、ayres、李赤

内容说明本内容是强化学习的基础,主要目标是学习常见的强化学习算法并进行相关的实践。

学习周期:17天

定位人群有一些机器学习、数学基础的小伙伴,有意向了解、学习强化学习的小伙伴,难度系数中

学习名额:100人

任务节选


Task01:强化学习基础(教程第一章+对应习题)(2天)。



5 /Intel带你初识视觉识别模型


开源贡献:Intel、王顺意、路建飞、陈陟原、谢文昕

内容说明介绍人工智能计算机视觉应用的相关知识,及如何利用英特尔®OpenVINO™工具套件解决视觉应用场景,完课可获得Datawhale和英特尔联合发布的课程证书。

学习周期:9

定位人群初识人工智能,希望了解边缘计算、应用落地工具的同学。

学习名额100人

任务节选

Task01:初识人工智能机视觉应用(3天)

数据科学

6 / SQL编程语言


开源贡献:王复振、杨煜、闫钟峰、杨梦迪、苏鹏、王鑫、崔腾松、陈长沙、黄涛

内容说明:Follow me,从 0 到 1 掌握 SQL。了解SQL基本特点,熟悉基本操作,掌握视图等高阶用法,最后秋招秘籍检验学习效果。详解介绍点这里

组队学习周期:16天

定位人群:0基础学员,希望掌握SQL基础查询的同学

学习名额:80人

任务节选


Task04 集合运算(3天)

  •  表的加减法

  •  连结(JOIN)



7 / 数据可视化(Matplotlib)


开源贡献:杨剑砺、杨煜、耿远昊、李运佳、居凤霞、夏木桃、徐辉、殷萍萍

内容说明:系统梳理了python最重要的数据可视化包的方方面面,并配有练习题供学习者核查学习效果。详细介绍点这里

组队学习周期:14天

定位人群:希望通过系统学习matplotlib包来提高python可视化技能的人。

学习名额:80人

任务节选


Task02:艺术画笔见乾坤(5天)

  • 作为整个matplotlib宇宙中最重要的一个环节,重点介绍了matplotlib绘图的核心API,以及使用matplotlib绘制基本元素的方法



8 / 动手学数据分析


开源贡献:陈安东、金娟娟、杨佳达、老表、李玲、张文涛、高立业、周辉池、肖桐、郭棉昇、乔彬

内容说明:以项目为主线,通过边学,边做以及边被引导的方式,既掌握知识点又能掌握数据分析的大致思路和流程。详细介绍点这里

组队学习周期:11天

定位人群:懂一些python,希望入门数据分析的学习者。

学习名额:100人

任务节选


Task01:数据加载及探索性数据分析(2天)

  • 了解数据加载以及数据观察

  • 掌握pandas基础

  • 完成探索性数据分析


编程基础

9 / 数据结构与算法


开源贡献:伯禹团队、上海交大ACM班同学、沈一、徐韵婉、张文恺、刘兴、刘佳福、曾海如、张翔宇

内容说明:数据结构与算法课程会以算法核心素质为基本特色,也就是“学习算法不仅仅是刷题”。希望学员学完后能不仅在面试时用到算法,更是为今后进入需要较强算法能力的高端工作领域打好基础。

学习周期:22天

定位人群:有一定C++基础,准备面试求职的同学。

学习名额:200人

任务节选


Task01:线性表、栈、队列。(12天)



10 / 基于Python的自动化办公


开源贡献:牧小熊、崔腾松、袁一涵、刘瑞航、于鸿飞

内容说明:包含有python操作文件处理,python操作邮件发送,python操作excel、word、pdf等,python操作钉钉以及python的简单爬虫。

学习周期:14天

定位人群:有python基础,对自动化办公有兴趣的同学。

学习名额:100人

任务节选


Task01:文件处理与邮件自动化(3天)


11 / GitModel统计分析(上)


开源贡献:李祖贤、刘斯豪、黎卓然、左凯文、胡隆辉、邱广坤

内容说明:介绍数学建模中数据分析问题的完整链路,着重介绍回归&分类问题的建模以及分析过程,并且手把手带你画出专业性满满的可视化图表!

学习周期:16天

定位人群

  • 有一定Python基础,学过GitModel数学建模的基石或有概率论与数理统计基础的同学;

  • 刚接触数学建模,想要入门统计分析模型的同学;

学习名额:100人

任务节选


Task02:Boston房价数据集的EDA(4天)


12 / 青少年编程:Python语言


开源贡献:王思齐、马燕鹏

内容说明:跟着春雷老师,看视频学习Python编程的基本知识。

学习周期21天

定位人群:对Python编程感兴趣的小朋友(10~18岁)。

学习名额:100人

任务节选


Task01:第一阶段功法(6天)

  • 打印你的数据

  • 输入功能input

  • 神奇的运算符

  • 比较运算符

  • 阶段复习



关于报名

▶ 时间:7月9日(周六)中午11:30

▶ 方式:在Datawhale高校群/在职群发布报名码,扫码报名后学习

关注公众号,后台回复关键词“在校”或“在职”进群;已在则无需重复加入。

由于组织学习非盈利,精力有限,未报名成功可以根据开源教程自行安排学习。

点击查看组队学习规则


开源地址

快速自学

⭐ 为难度系数

1.  吃瓜教程——西瓜书+南瓜书

开源地址:https://github.com/datawhalechina/pumpkin-book

B 站视频教程:https://www.bilibili.com/video/BV1Mh411e7VU


2. 李宏毅机器学习(含深度学习)⭐

开源地址:https://github.com/datawhalechina/leeml-notes

配套课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef

2021李宏毅授权课程视频:https://www.bilibili.com/video/BV1JA411c7VT


3. 深入浅出PyTorch

开源地址:https://github.com/datawhalechina/thorough-pytorch

B站视频:https://www.bilibili.com/video/BV1L44y1472Z


4. 采蘑菇教程—Easy-RL:强化学习⭐️

开源地址:https://linklearner.com/datawhale-homepage/#/learn/detail/91


5. Intel带你初识视觉识别模型

开源地址:https://vxr.h5.xeknow.com/s/3Eg4J8


6. SQL编程语言

开源地址 :https://github.com/datawhalechina/wonderful-sql


7. 数据可视化(Matplotlib)

开源地址:https://github.com/datawhalechina/fantastic-matplotlib


8. 动手学数据分析

开源地址:https://github.com/datawhalechina/hands-on-data-analysis

B站视频:https://www.bilibili.com/video/BV1Uv411p77r


9. 数据结构与算法

开源地址https://www.qingzhouzhixue.com/


10. 基于Python的自动化办公⭐️

开源地址:https://github.com/datawhalechina/office-automation

11. GitModel统计分析

开源地址https://github.com/Git-Model/Modeling-Universe/tree/main/Data-Story

12. 青少年编程:Python语言⭐
开源地址:https://github.com/datawhalechina/team-learning-program/tree/master/ChildrenProgramming
B站视频:https://space.bilibili.com/90353310/

一键三连,一起学习⬇️ 

good-icon 0
favorite-icon 0
收藏
回复数量: 0
    暂无评论~~
    Ctrl+Enter