首页 文章详情

【关于 Bert 源码解析IV 之 句向量生成篇 】 那些的你不知道的事

DayNightStudy | 326 2022-01-21 21:06 0 0 0
UniSMS (合一短信)

作者简介




作者:杨夕

论文名称:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

论文链接:https://arxiv.org/pdf/1706.03762.pdf

代码链接:https://github.com/google-research/bert

推荐系统 百面百搭地址:

https://github.com/km1994/RES-Interview-Notes

NLP 百面百搭地址:

https://github.com/km1994/NLP-Interview-Notes

个人 NLP 笔记:

https://github.com/km1994/nlp_paper_study

个人介绍:大佬们好,我叫杨夕,该项目主要是本人在研读顶会论文和复现经典论文过程中,所见、所思、所想、所闻,可能存在一些理解错误,希望大佬们多多指正。

目录

  • 【关于 Bert 源码解析IV 之 句向量生成篇 】 那些的你不知道的事

    • 目录

    • 一、动机

    • 二、本文框架

    • 三、前言

    • 四、配置类 (Config)

    • 五、特征实例类 (InputExample)

    • 六、Bert 句向量 类 (BertVector)

    • 七、Bert 句向量 生成 实例

    • 八、总结

    • 参考资料

一、动机

之前给 小伙伴们 写过 一篇 【【关于Bert】 那些的你不知道的事】后,有一些小伙伴联系我,说对 【Bert】 里面的很多细节性问题都没看懂,不清楚他怎么实现的。针对该问题,小菜鸡的我 也 意识到自己的不足,所以就 想 研读一下 【Bert】 的 源码,并针对 之前小伙伴 的一些 问题 进行 回答和解释,能力有限,希望对大家有帮助。

二、本文框架

本文 将 【Bert】 的 源码分成以下模块:

  1. 【关于 Bert 源码解析 之 主体篇 】 那些的你不知道的事

  2. 【关于 Bert 源码解析 之 预训练篇 】 那些的你不知道的事

  3. 【关于 Bert 源码解析 之 微调篇 】 那些的你不知道的事

  4. 【关于 Bert 源码解析IV 之 句向量生成篇 】 那些的你不知道的事 【本章】

  5. 【关于 Bert 源码解析V 之 文本相似度篇 】 那些的你不知道的事

分模块 进行解读。

三、前言

本文 主要 解读 Bert 模型的 微调 模块代码:

  • extract_feature.py:主要用于 生成 Bert 句向量

四、配置类 (Config)

该类主要包含 一些 Bert 模型地址,和一些采用配置信息

import os
import tensorflow as tf
class Config():
def __init__(self):
tf.logging.set_verbosity(tf.logging.INFO)
self.file_path = os.path.dirname(__file__)
# Bert 模型 的 路径
self.model_dir = os.path.join(self.file_path, 'F:/document/datasets/nlpData/bert/chinese_L-12_H-768_A-12/')
# Bert 模型 配置
self.config_name = os.path.join(self.model_dir, 'bert_config.json')
# Bert 模型 文件
self.ckpt_name = os.path.join(self.model_dir, 'bert_model.ckpt')
# Bert 输出
self.output_dir = os.path.join("", 'output/')
# Bert 词库
self.vocab_file = os.path.join(self.model_dir, 'vocab.txt')
# 训练数据地址
self.data_dir = os.path.join("", 'data/')
# 训练 epochs
self.num_train_epochs = 10
# 训练 batch_size
self.batch_size = 128
self.learning_rate = 0.00005
# gpu使用率
self.gpu_memory_fraction = 0.8
# 默认取倒数第二层的输出值作为句向量
self.layer_indexes = [-2]
# 序列的最大程度,单文本建议把该值调小
self.max_seq_len = 32

五、特征实例类 (InputExample)

class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b

class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids

六、Bert 句向量 类 (BertVector)

这一个 是 生成 Bert 句向量的 类,流程:

  1. 模型加载 (get_estimator);

  2. predict input 预处理 (queue_predict_input_fn);

    1. 将 实例(examples) 转化为 特征(features)(convert_examples_to_features);

  3. encode sentence (encode);

class BertVector:
def __init__(self, batch_size=32):
"""
init BertVector
:param batch_size: Depending on your memory default is 32
"""
self.max_seq_length = args.max_seq_len
self.layer_indexes = args.layer_indexes
self.gpu_memory_fraction = 1
self.graph_path = optimize_graph()
self.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
self.batch_size = batch_size
# 获取 estimator
self.estimator = self.get_estimator()
# 输入 队列
self.input_queue = Queue(maxsize=1)
# 输出 队列
self.output_queue = Queue(maxsize=1)
# 预测 线程
self.predict_thread = Thread(target=self.predict_from_queue, daemon=True)
self.predict_thread.start()
self.sentence_len = 0
# 获取 estimator
def get_estimator(self):
from tensorflow.python.estimator.estimator import Estimator
from tensorflow.python.estimator.run_config import RunConfig
from tensorflow.python.estimator.model_fn import EstimatorSpec

def model_fn(features, labels, mode, params):
with tf.gfile.GFile(self.graph_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())

input_names = ['input_ids', 'input_mask', 'input_type_ids']

output = tf.import_graph_def(
graph_def,
input_map={k + ':0': features[k] for k in input_names},return_elements=['final_encodes:0']
)
return EstimatorSpec(mode=mode, predictions={
'encodes': output[0]
})
# GPU 配置信息
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = self.gpu_memory_fraction
config.log_device_placement = False
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
return Estimator(
model_fn=model_fn,
config=RunConfig(session_config=config),
params={'batch_size': self.batch_size}
)
# 预测
def predict_from_queue(self):
prediction = self.estimator.predict(input_fn=self.queue_predict_input_fn, yield_single_examples=False)
for i in prediction:
self.output_queue.put(i)
# encode sentence
def encode(self, sentence):
self.sentence_len = len(sentence)
self.input_queue.put(sentence)
prediction = self.output_queue.get()['encodes']
return prediction
# 预测 input 生成
def queue_predict_input_fn(self):
return (
tf.data.Dataset.from_generator(
self.generate_from_queue,
output_types={
'unique_ids': tf.int32,
'input_ids': tf.int32,
'input_mask': tf.int32,
'input_type_ids': tf.int32
},
output_shapes={
'unique_ids': (self.sentence_len,),
'input_ids': (None, self.max_seq_length),
'input_mask': (None, self.max_seq_length),
'input_type_ids': (None, self.max_seq_length)
}
).prefetch(10))

def generate_from_queue(self):
while True:
features = list(self.convert_examples_to_features(seq_length=self.max_seq_length, tokenizer=self.tokenizer))
yield {
'unique_ids': [f.unique_id for f in features],
'input_ids': [f.input_ids for f in features],
'input_mask': [f.input_mask for f in features],
'input_type_ids': [f.input_type_ids for f in features]
}

def input_fn_builder(self, features, seq_length):
"""Creates an `input_fn` closure to be passed to Estimator."""

all_unique_ids = []
all_input_ids = []
all_input_mask = []
all_input_type_ids = []

for feature in features:
all_unique_ids.append(feature.unique_id)
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_input_type_ids.append(feature.input_type_ids)

def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]

num_examples = len(features)

# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"unique_ids":
tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"input_type_ids":
tf.constant(
all_input_type_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
})

d = d.batch(batch_size=batch_size, drop_remainder=False)
return d

return input_fn

def model_fn_builder(self, bert_config, init_checkpoint, layer_indexes):
"""Returns `model_fn` closure for TPUEstimator."""

def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""

unique_ids = features["unique_ids"]
input_ids = features["input_ids"]
input_mask = features["input_mask"]
input_type_ids = features["input_type_ids"]

jit_scope = tf.contrib.compiler.jit.experimental_jit_scope

with jit_scope():
model = modeling.BertModel(
config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=input_type_ids)

if mode != tf.estimator.ModeKeys.PREDICT:
raise ValueError("Only PREDICT modes are supported: %s" % (mode))

tvars = tf.trainable_variables()

(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)

tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)

all_layers = model.get_all_encoder_layers()

predictions = {
"unique_id": unique_ids,
}

for (i, layer_index) in enumerate(layer_indexes):
predictions["layer_output_%d" % i] = all_layers[layer_index]

from tensorflow.python.estimator.model_fn import EstimatorSpec

output_spec = EstimatorSpec(mode=mode, predictions=predictions)
return output_spec

return model_fn

def convert_examples_to_features(self, seq_length, tokenizer):
"""将数据文件加载到 “InputBatch” 队列中 【这一部分 之前介绍过】"""

features = []
input_masks = []
examples = self._to_example(self.input_queue.get())
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)

# 如果 句子 长度 大于 seq_len,只取 左边句子
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]

# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first sequence or the second sequence. The embedding vectors for `type=0` and `type=1` were learned during pre-training and are added to the wordpiece embedding vector (and position vector). This is not *strictly* necessary since the [SEP] token unambiguously separates the sequences, but it makes it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)

# Where "input_ids" are tokens's index in vocabulary
input_ids = tokenizer.convert_tokens_to_ids(tokens)

# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
input_masks.append(input_mask)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)

assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length

if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (example.unique_id))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))

yield InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids)

def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
"""将序列对截断到最大长度"""

# 这是一个简单的启发式方法,它总是一次一个 token 地截断较长的序列。这比从每个 token 中截取相等百分比的 token 更有意义,因为如果一个序列非常短,那么每个被截断的 token 可能包含比较长序列更多的信息。
# This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()

# sentences 转 InputExamples
@staticmethod
def _to_example(sentences):
import re
"""
sentences to InputExample
:param sentences: list of strings
:return: list of InputExample
"""
unique_id = 0
for ss in sentences:
line = tokenization.convert_to_unicode(ss)
if not line:
continue
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)
unique_id += 1

七、Bert 句向量 生成 实例

if __name__ == "__main__":
bert = BertVector()
# while True:
# question = input('question: ')
vectors = bert.encode(['你好', '哈哈'])
print(str(vectors))
>>>
INFO:tensorflow:*** Example ***
INFO:tensorflow:unique_id: 0
INFO:tensorflow:tokens: [CLS] 你 好 , be ##rt ! [SEP]
INFO:tensorflow:input_ids: 101 872 1962 8024 8815 8716 8013 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_type_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:*** Example ***
INFO:tensorflow:unique_id: 1
INFO:tensorflow:tokens: [CLS] 这 是 一 个 例 子 [SEP]
INFO:tensorflow:input_ids: 101 6821 3221 671 702 891 2094 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_type_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[[ 0.77314675 0.00324035 0.35886183 ... -0.00801571 0.6570408
0.3012028 ]
[-0.26962122 0.49693802 0.33362615 ... 0.42230296 0.5397997
-0.47371814]]

八、总结

本章 主要介绍了 利用 Bert 生成 句向量,代码比较简单。

  1. 【关于 Bert 源码解析 之 主体篇 】 那些的你不知道的事

  2. 【关于 Bert 源码解析 之 预训练篇 】 那些的你不知道的事

  3. 【关于 Bert 源码解析 之 微调篇 】 那些的你不知道的事

  4. 【关于 Bert 源码解析IV 之 句向量生成篇 】 那些的你不知道的事 【本章】

  5. 【关于 Bert 源码解析V 之 文本相似度篇 】 那些的你不知道的事

分模块 进行解读。

所有文章

五谷杂粮


NLP百面百搭


Rasa 对话系统


知识图谱入门


转载记录





good-icon 0
favorite-icon 0
收藏
回复数量: 0
    暂无评论~~
    Ctrl+Enter