首页 文章详情

【关于 Bert 源码解析III 之 微调 篇 】 那些的你不知道的事

DayNightStudy | 399 2021-07-07 03:09 0 0 0
UniSMS (合一短信)

作者:杨夕

论文链接:https://arxiv.org/pdf/1810.04805.pdf

本文链接:https://github.com/km1994/nlp_paper_study

个人介绍:大佬们好,我叫杨夕,该项目主要是本人在研读顶会论文和复现经典论文过程中,所见、所思、所想、所闻,可能存在一些理解错误,希望大佬们多多指正。

【注:手机阅读可能图片打不开!!!】

目录

    一、动机

    之前给 小伙伴们 写过 一篇 【【关于Bert】 那些的你不知道的事】后,有一些小伙伴联系我,说对 【Bert】 里面的很多细节性问题都没看懂,不清楚他怎么实现的。针对该问题,小菜鸡的我 也 意识到自己的不足,所以就 想 研读一下 【Bert】 的 源码,并针对 之前小伙伴 的一些 问题 进行 回答和解释,能力有限,希望对大家有帮助。

    二、本文框架

    本文 将 【Bert】 的 源码分成以下模块:

    1. 【关于 Bert 源码解析 之 主体篇 】 那些的你不知道的事

    2. 【关于 Bert 源码解析 之 预训练篇 】 那些的你不知道的事

    3. 【关于 Bert 源码解析 之 微调篇 】 那些的你不知道的事【本章】

    4. 【关于 Bert 源码解析IV 之 句向量生成篇 】 那些的你不知道的事

    5. 【关于 Bert 源码解析V 之 文本相似度篇 】 那些的你不知道的事

    分模块 进行解读。

    三、前言

    本文 主要 解读 Bert 模型的 微调 模块代码:

    • run_classifier.py:主要用于 文本分类 任务的微调

    四、参数解析

    flags = tf.flags
    FLAGS = flags.FLAGS
    '''
    必要参数
    '''
    # 数据地址
    flags.DEFINE_string(
    "data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")
    # Bert 配置文件地址
    flags.DEFINE_string(
    "bert_config_file", None,
    "The config json file corresponding to the pre-trained BERT model. "
    "This specifies the model architecture.")
    # 训练任务
    flags.DEFINE_string("task_name", None, "The name of the task to train.")
    # Bert 词库
    flags.DEFINE_string("vocab_file", None,
    "The vocabulary file that the BERT model was trained on.")
    # 训练输出 地址
    flags.DEFINE_string(
    "output_dir", None,
    "The output directory where the model checkpoints will be written.")
    '''
    其他参数
    '''
    # 预训练 Bert 模型
    flags.DEFINE_string(
    "init_checkpoint", None,
    "Initial checkpoint (usually from a pre-trained BERT model).")
    # 是否小写
    flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")
    # 指定WordPiece tokenization 之后的sequence的最大长度,要求小于等于预训练模型的最大sequence长度。当输入的数据长度小于max_seq_length时用0补齐,如果长度大于max_seq_length则truncate处理;
    flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")
    # 训练
    flags.DEFINE_bool("do_train", False, "Whether to run training.")
    # 验证
    flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
    # 预测
    flags.DEFINE_bool(
    "do_predict", False,
    "Whether to run the model in inference mode on the test set.")
    # 训练 Batch 大小
    flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
    # 评测 Batch 大小
    flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
    # 预测 Batch 大小
    flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
    # 学习率
    flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
    # 训练 epochs
    flags.DEFINE_float("num_train_epochs", 3.0,
    "Total number of training epochs to perform.")
    # 进行线性学习率预热的训练比例。
    flags.DEFINE_float(
    "warmup_proportion", 0.1,
    "Proportion of training to perform linear learning rate warmup for. "
    "E.g., 0.1 = 10% of training.")
    # 保存模型 步长
    flags.DEFINE_integer("save_checkpoints_steps", 1000,
    "How often to save the model checkpoint.")
    # 每个 estimator call 调用中要执行多少步
    flags.DEFINE_integer("iterations_per_loop", 1000,
    "How many steps to make in each estimator call.")
    # 是否 使用 TPU
    flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
    # TPU 名称
    tf.flags.DEFINE_string(
    "tpu_name", None,
    "The Cloud TPU to use for training. This should be either the name "
    "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
    "url.")

    tf.flags.DEFINE_string(
    "tpu_zone", None,
    "[Optional] GCE zone where the Cloud TPU is located in. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

    tf.flags.DEFINE_string(
    "gcp_project", None,
    "[Optional] Project name for the Cloud TPU-enabled project. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

    tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")

    flags.DEFINE_integer(
    "num_tpu_cores", 8,
    "Only used if `use_tpu` is True. Total number of TPU cores to use.")

    五、输入数据实例

    class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
    """Constructs a InputExample.

    Args:
    guid: 实例 唯一 id
    text_a: string. 第一个序列的未标记文本。 对于单序列任务,仅必须指定此序列。
    text_b: (Optional) string. 第二个序列的未标记文本。 仅必须为序列对任务指定。
    label: (Optional) string. 实例的标签。 应该为train和dev实例指定此名称,但不为测试实例指定,如果是test数据集则label统一为0。
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label

    六、特定任务数据处理

    6.1 数据处理 接口

    • 作用:数据预处理 接口

    class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

    def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

    def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

    def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.gfile.Open(input_file, "r") as f:
    reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
    lines = []
    for line in reader:
    lines.append(line)
    return lines

    6.2 推理任务 数据集处理

    • 目标:读取两句话,并判定两者间的关系是否为“蕴含”(Entailment)、“矛盾”(Contradict)或“中性”(Neutral)

    • 具体任务数据介绍:FAIR重磅发布大规模语料库XNLI:支持15种语言,解决跨语言理解难题

    class XnliProcessor(DataProcessor):
    """Processor for the XNLI data set."""

    def __init__(self):
    self.language = "zh"

    def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(
    os.path.join(data_dir, "multinli",
    "multinli.train.%s.tsv" % self.language))
    examples = []
    for (i, line) in enumerate(lines):
    if i == 0:
    continue
    guid = "train-%d" % (i)
    text_a = tokenization.convert_to_unicode(line[0])
    text_b = tokenization.convert_to_unicode(line[1])
    label = tokenization.convert_to_unicode(line[2])
    if label == tokenization.convert_to_unicode("contradictory"):
    label = tokenization.convert_to_unicode("contradiction")
    examples.append(
    InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

    def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
    for (i, line) in enumerate(lines):
    if i == 0:
    continue
    guid = "dev-%d" % (i)
    language = tokenization.convert_to_unicode(line[0])
    if language != tokenization.convert_to_unicode(self.language):
    continue
    text_a = tokenization.convert_to_unicode(line[6])
    text_b = tokenization.convert_to_unicode(line[7])
    label = tokenization.convert_to_unicode(line[1])
    examples.append(
    InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

    def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

    6.3 二分类任务 数据集处理

    class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
    self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
    self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
    self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

    def get_labels(self):
    """See base class."""
    return ["0", "1"]

    def _create_examples(self, lines, set_type):
    """Creates examples for the training and dev sets."""
    examples = []
    for (i, line) in enumerate(lines):
    # Only the test set has a header
    if set_type == "test" and i == 0:
    continue
    guid = "%s-%s" % (set_type, i)
    if set_type == "test":
    text_a = tokenization.convert_to_unicode(line[1])
    label = "0"
    else:
    text_a = tokenization.convert_to_unicode(line[3])
    label = tokenization.convert_to_unicode(line[1])
    examples.append(
    InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples

    七、examples转换成features (file_based_convert_examples_to_features)

    7.1 单例转化

    • 作用:将单个InputExample转换为单个InputFeatures。

    • 流程:

      • step 1:判断 example 是否是 PaddingInputExample

      • step 2:构建 label map

      • step 3:text_a 序列化

      • step 4:text_b 序列化

      • step 5:训练 长度修改

      • step 6:输入数据 转化未 Bert 所要求类型数据

      • step 7:输入数据 转化为 id 系列

      • step 8:Mask 数据

      • step 9:利用 0 填充

      • step 10:标签 处理

      • step 11:构建 InputExample

    def convert_single_example(
    ex_index,
    example,
    label_list,
    max_seq_length,
    tokenizer):
    """将单个 InputExample 转换为单个InputFeatures。"""
    # step 1:判断 example 是否是 PaddingInputExample
    if isinstance(example, PaddingInputExample):
    return InputFeatures(
    input_ids=[0] * max_seq_length,
    input_mask=[0] * max_seq_length,
    segment_ids=[0] * max_seq_length,
    label_id=0,
    is_real_example=False)
    # step 2:构建 label map
    label_map = {}
    for (i, label) in enumerate(label_list):
    label_map[label] = i
    # step 3:text_a 序列化
    tokens_a = tokenizer.tokenize(example.text_a)
    # step 4:text_b 序列化
    tokens_b = None
    if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)
    # step 5:训练 长度修改
    if tokens_b:
    # 在适当位置修改`tokens_a`和`tokens_b`,以使总长度小于指定长度。
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
    tokens_a = tokens_a[0:(max_seq_length - 2)]

    # step 6:输入数据 转化未 Bert 所要求类型数据
    # The convention in BERT is:
    # (a) For sequence pairs:
    # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
    # (b) For single sequences:
    # tokens: [CLS] the dog is hairy . [SEP]
    # type_ids: 0 0 0 0 0 0 0
    #
    # Where "type_ids" are used to indicate whether this is the first sequence or the second sequence. The embedding vectors for `type=0` and `type=1` were learned during pre-training and are added to the wordpiece embedding vector (and position vector). This is not *strictly* necessary since the [SEP] token unambiguously separates the sequences, but it makes it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is used as the "sentence vector". Note that this only makes sense because the entire model is fine-tuned.
    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
    tokens.append(token)
    segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
    for token in tokens_b:
    tokens.append(token)
    segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

    # step 7:输入数据 转化为 id 系列
    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # step 8:Mask 数据
    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # step 9:利用 0 填充
    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    # step 10:标签 处理
    label_id = label_map[example.label]
    if ex_index < 5:
    tf.logging.info("*** Example ***")
    tf.logging.info("guid: %s" % (example.guid))
    tf.logging.info("tokens: %s" % " ".join(
    [tokenization.printable_text(x) for x in tokens]))
    tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
    tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
    tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
    tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
    # step 11:构建 InputFeatures 实例
    feature = InputFeatures(
    input_ids=input_ids,
    input_mask=input_mask,
    segment_ids=segment_ids,
    label_id=label_id,
    is_real_example=True)
    return feature

    7.2 单例转化

    def file_based_convert_examples_to_features(
    examples, label_list, max_seq_length, tokenizer, output_file):
    """Convert a set of `InputExample`s to a TFRecord file."""

    writer = tf.python_io.TFRecordWriter(output_file)

    for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
    tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

    feature = convert_single_example(ex_index, example, label_list,
    max_seq_length, tokenizer)

    def create_int_feature(values):
    f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
    return f

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["label_ids"] = create_int_feature([feature.label_id])
    features["is_real_example"] = create_int_feature(
    [int(feature.is_real_example)])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
    writer.close()

    八、创建模型

    8.1 create_model 创建 分类模型

    def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
    labels, num_labels, use_one_hot_embeddings):
    """创建 分类模型"""
    model = modeling.BertModel(
    config=bert_config,
    is_training=is_training,
    input_ids=input_ids,
    input_mask=input_mask,
    token_type_ids=segment_ids,
    use_one_hot_embeddings=use_one_hot_embeddings)

    # In the demo, we are doing a simple classification task on the entire segment.
    #
    # If you want to use the token-level output, use model.get_sequence_output() instead.
    output_layer = model.get_pooled_output()

    hidden_size = output_layer.shape[-1].value

    output_weights = tf.get_variable(
    "output_weights", [num_labels, hidden_size],
    initializer=tf.truncated_normal_initializer(stddev=0.02))

    output_bias = tf.get_variable(
    "output_bias", [num_labels], initializer=tf.zeros_initializer())
    # 计算损失函数
    with tf.variable_scope("loss"):
    if is_training:
    # I.e., 0.1 dropout
    output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

    logits = tf.matmul(output_layer, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    probabilities = tf.nn.softmax(logits, axis=-1)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)

    return (loss, per_example_loss, logits, probabilities)

    8.2 model_fn_builder

    • 作用:

    def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
    num_train_steps, num_warmup_steps, use_tpu,
    use_one_hot_embeddings):
    """Returns `model_fn` closure for TPUEstimator."""

    def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
    tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]
    is_real_example = None
    if "is_real_example" in features:
    is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
    else:
    is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    # 总的损失定义为两者之和
    (total_loss, per_example_loss, logits, probabilities) = create_model(
    bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
    num_labels, use_one_hot_embeddings)
    # 获取所有变量
    tvars = tf.trainable_variables()
    initialized_variable_names = {}
    scaffold_fn = None
    # 如果有之前保存的模型,则进行恢复
    if init_checkpoint:
    (assignment_map, initialized_variable_names
    ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
    if use_tpu:

    def tpu_scaffold():
    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
    return tf.train.Scaffold()

    scaffold_fn = tpu_scaffold
    else:
    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
    init_string = ""
    if var.name in initialized_variable_names:
    init_string = ", *INIT_FROM_CKPT*"
    tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
    init_string)
    # 训练过程,获得spec
    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:

    train_op = optimization.create_optimizer(
    total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

    output_spec = tf.contrib.tpu.TPUEstimatorSpec(
    mode=mode,
    loss=total_loss,
    train_op=train_op,
    scaffold_fn=scaffold_fn)
    # 验证过程spec
    elif mode == tf.estimator.ModeKeys.EVAL:

    def metric_fn(per_example_loss, label_ids, logits, is_real_example):
    predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
    accuracy = tf.metrics.accuracy(
    labels=label_ids, predictions=predictions, weights=is_real_example)
    loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
    return {
    "eval_accuracy": accuracy,
    "eval_loss": loss,
    }

    eval_metrics = (metric_fn,
    [per_example_loss, label_ids, logits, is_real_example])
    output_spec = tf.contrib.tpu.TPUEstimatorSpec(
    mode=mode,
    loss=total_loss,
    eval_metrics=eval_metrics,
    scaffold_fn=scaffold_fn)
    # 预测过程spec
    else:
    output_spec = tf.contrib.tpu.TPUEstimatorSpec(
    mode=mode,
    predictions={"probabilities": probabilities},
    scaffold_fn=scaffold_fn)
    return output_spec

    return model_fn

    九、主入口

    def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)
    # 任务处理器 映射表
    processors = {
    "cola": ColaProcessor,
    "mnli": MnliProcessor,
    "mrpc": MrpcProcessor,
    "xnli": XnliProcessor,
    }

    tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
    FLAGS.init_checkpoint)

    if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
    raise ValueError(
    "At least one of `do_train`, `do_eval` or `do_predict' must be True.")
    # 加载 Bert 配置
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    if FLAGS.max_seq_length > bert_config.max_position_embeddings:
    raise ValueError(
    "Cannot use sequence length %d because the BERT model "
    "was only trained up to sequence length %d" %
    (FLAGS.max_seq_length, bert_config.max_position_embeddings))

    tf.gfile.MakeDirs(FLAGS.output_dir)

    task_name = FLAGS.task_name.lower()

    if task_name not in processors:
    raise ValueError("Task not found: %s" % (task_name))
    # 定义任务处理器
    processor = processors[task_name]()
    # 获取标签项
    label_list = processor.get_labels()
    # 数据预处理
    tokenizer = tokenization.FullTokenizer(
    vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
    FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
    cluster=tpu_cluster_resolver,
    master=FLAGS.master,
    model_dir=FLAGS.output_dir,
    save_checkpoints_steps=FLAGS.save_checkpoints_steps,
    tpu_config=tf.contrib.tpu.TPUConfig(
    iterations_per_loop=FLAGS.iterations_per_loop,
    num_shards=FLAGS.num_tpu_cores,
    per_host_input_for_training=is_per_host))

    train_examples = None
    num_train_steps = None
    num_warmup_steps = None
    # 模型训练 数据加载
    if FLAGS.do_train:
    # 加载训练数据
    train_examples = processor.get_train_examples(FLAGS.data_dir)
    num_train_steps = int(
    len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
    num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
    # 自定义模型用于estimator训练
    model_fn = model_fn_builder(
    bert_config=bert_config,
    num_labels=len(label_list),
    init_checkpoint=FLAGS.init_checkpoint,
    learning_rate=FLAGS.learning_rate,
    num_train_steps=num_train_steps,
    num_warmup_steps=num_warmup_steps,
    use_tpu=FLAGS.use_tpu,
    use_one_hot_embeddings=FLAGS.use_tpu)

    # 如果没有TPU,会自动转为CPU/GPU的Estimator
    estimator = tf.contrib.tpu.TPUEstimator(
    use_tpu=FLAGS.use_tpu,
    model_fn=model_fn,
    config=run_config,
    train_batch_size=FLAGS.train_batch_size,
    eval_batch_size=FLAGS.eval_batch_size,
    predict_batch_size=FLAGS.predict_batch_size)
    # 模型 训练
    if FLAGS.do_train:
    train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
    file_based_convert_examples_to_features(
    train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
    tf.logging.info("***** Running training *****")
    tf.logging.info(" Num examples = %d", len(train_examples))
    tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
    tf.logging.info(" Num steps = %d", num_train_steps)
    train_input_fn = file_based_input_fn_builder(
    input_file=train_file,
    seq_length=FLAGS.max_seq_length,
    is_training=True,
    drop_remainder=True)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
    # 模型 验证 数据加载
    if FLAGS.do_eval:
    eval_examples = processor.get_dev_examples(FLAGS.data_dir)
    num_actual_eval_examples = len(eval_examples)
    if FLAGS.use_tpu:
    # TPU requires a fixed batch size for all batches, therefore the number
    # of examples must be a multiple of the batch size, or else examples
    # will get dropped. So we pad with fake examples which are ignored
    # later on. These do NOT count towards the metric (all tf.metrics
    # support a per-instance weight, and these get a weight of 0.0).
    while len(eval_examples) % FLAGS.eval_batch_size != 0:
    eval_examples.append(PaddingInputExample())

    eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
    file_based_convert_examples_to_features(
    eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

    tf.logging.info("***** Running evaluation *****")
    tf.logging.info(" Num examples = %d (%d actual, %d padding)",
    len(eval_examples), num_actual_eval_examples,
    len(eval_examples) - num_actual_eval_examples)
    tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)

    # This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
    assert len(eval_examples) % FLAGS.eval_batch_size == 0
    eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = file_based_input_fn_builder(
    input_file=eval_file,
    seq_length=FLAGS.max_seq_length,
    is_training=False,
    drop_remainder=eval_drop_remainder)

    result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
    tf.logging.info("***** Eval results *****")
    for key in sorted(result.keys()):
    tf.logging.info(" %s = %s", key, str(result[key]))
    writer.write("%s = %s\n" % (key, str(result[key])))
    # 模型预测
    if FLAGS.do_predict:
    predict_examples = processor.get_test_examples(FLAGS.data_dir)
    num_actual_predict_examples = len(predict_examples)
    if FLAGS.use_tpu:
    # TPU requires a fixed batch size for all batches, therefore the number
    # of examples must be a multiple of the batch size, or else examples
    # will get dropped. So we pad with fake examples which are ignored
    # later on.
    while len(predict_examples) % FLAGS.predict_batch_size != 0:
    predict_examples.append(PaddingInputExample())

    predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
    file_based_convert_examples_to_features(predict_examples, label_list,
    FLAGS.max_seq_length, tokenizer,
    predict_file)

    tf.logging.info("***** Running prediction*****")
    tf.logging.info(" Num examples = %d (%d actual, %d padding)",
    len(predict_examples), num_actual_predict_examples,
    len(predict_examples) - num_actual_predict_examples)
    tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)

    predict_drop_remainder = True if FLAGS.use_tpu else False
    predict_input_fn = file_based_input_fn_builder(
    input_file=predict_file,
    seq_length=FLAGS.max_seq_length,
    is_training=False,
    drop_remainder=predict_drop_remainder)

    result = estimator.predict(input_fn=predict_input_fn)

    output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
    with tf.gfile.GFile(output_predict_file, "w") as writer:
    num_written_lines = 0
    tf.logging.info("***** Predict results *****")
    for (i, prediction) in enumerate(result):
    probabilities = prediction["probabilities"]
    if i >= num_actual_predict_examples:
    break
    output_line = "\t".join(
    str(class_probability)
    for class_probability in probabilities) + "\n"
    writer.write(output_line)
    num_written_lines += 1
    assert num_written_lines == num_actual_predict_examples

    十、总结

    本章 主要介绍了 利用 Bert fineturn,代码比较简单。

    1. 【关于 Bert 源码解析 之 主体篇 】 那些的你不知道的事

    2. 【关于 Bert 源码解析 之 预训练篇 】 那些的你不知道的事

    3. 【关于 Bert 源码解析 之 微调篇 】 那些的你不知道的事【本章】

    4. 【关于 Bert 源码解析IV 之 句向量生成篇 】 那些的你不知道的事

    5. 【关于 Bert 源码解析V 之 文本相似度篇 】 那些的你不知道的事

    分模块 进行解读。

    参考文档

    1. Bert系列(四)——源码解读之Fine-tune

    2. BERT源码分析PART III


    good-icon 0
    favorite-icon 0
    收藏
    回复数量: 0
      暂无评论~~
      Ctrl+Enter