首页 文章详情

human-learn 做到了!画图也可以创建机器学习模型!

大邓和他的Python | 567 2021-06-03 08:31 0 0 0
UniSMS (合一短信)

如今,数据科学家经常给带有标签的机器学习模型数据,以便它可以找出规则。这些规则可用于预测新数据的标签。这很方便,但是在此过程中可能会丢失一些信息。也很难知道引擎盖下发生了什么,以及为什么机器学习模型会产生特定的预测。

除了让机器学习模型弄清楚所有内容之外,还有没有一种方法可以利用我们的领域知识来设置数据标记的规则?

是的,这可以通过 human-learn 来完成。

什么是 human-learn

human-learn 是一种工具,可让你使用交互式工程图和自定义模型来设置数据标记规则。在本文中,我们将探索如何使用 human-learn 来创建带有交互式图纸的模型。

安装  human-learn

pip install human-learn

我将使用来自sklearn的Iris数据来展示human-learn的工作原理。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd 

# Load data
X, y = load_iris(return_X_y=True, as_frame=True)
X.columns = ['sepal_length''sepal_width''petal_length''petal_width']

# Train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

# Concatenate features and labels of the training data
train = pd.concat([X_train, pd.DataFrame(y_train)], axis=1)
train

互动绘图

human-learn 允许你绘制数据集,然后使用工程图将其转换为模型。为了演示这是如何有用的,想象一下如何创建数据集的散点图,如下所示:查看上面的图时,你会看到如何将它们分成3个不同的区域,如下所示:

但是,可能很难将图形编写为规则并将其放入函数中,human-learn的交互式绘图将派上用场。

from hulearn.experimental.interactive import InteractiveCharts

charts = InteractiveCharts(train, labels='target')
charts.add_chart(x='sepal_length', y='sepal_width')

「绘制方法」:使用双击开始绘制多边形。然后单击以创建多边形的边。再次双击可停止绘制当前多边形。

我们对其他列也做同样的事情:

charts.add_chart(x='petal_length', y='petal_width')

创建模型并进行预测

一旦完成对数据集的绘制,就可以使用以下方法创建模型:

from hulearn.classification import InteractiveClassifier

model = InteractiveClassifier(json_desc=charts.data())
preds = model.fit(X_train, y_train).predict_proba(X_train)

print(preds.shape) # Output: (150, 3)

cool!我们将工程图输入InteractiveClassifier类,使用类似的方法来拟合sklearn的模型,例如fit和predict_proba。

让我们来看看pred的前5行:

print('Classes:', model.classes_)
print('Predictions:\n', preds[:5, :])

"""Output
Classes: [1, 2, 0]
Predictions:
 [[5.71326574e-01 4.28530630e-01 1.42795945e-04]
 [2.00079952e-01 7.99720168e-01 1.99880072e-04]
 [2.00079952e-01 7.99720168e-01 1.99880072e-04]
 [2.49812641e-04 2.49812641e-04 9.99500375e-01]
 [4.99916708e-01 4.99916708e-01 1.66583375e-04]]
"""

需要说明的是,predict_proba给出了样本具有特定标签的概率。例如,[5.71326574e-01 4.28530630e-01 1.42795945e-04]的第一个预测表示样本具有标签1的可能性为57.13%,样本具有标签2的可能性为42.85%,而样本为标签2的可能性为0.014% 该样本的标签为0。

预测新数据

# Get the first sample of X_test
new_sample = new_sample = X_test.iloc[:1]

# Predict
pred = model.predict(new_sample)
real = y_test[:1]
print("The prediction is", pred[0])
print("The real label is", real.iloc[0])

解释结果

为了了解模型如何根据该预测进行预测,让我们可视化新样本。

def plot_prediction(prediction: int, columns: list):
    """Plot new sample
    Parameters
    ----------
    prediction : int
        prediction of the new sample
    columns : list
        Features to create a scatter plot 
    """

    
    index = prediction_to_index[prediction] 
    col1, col2 = columns
    
    plt.figure(figsize=(123))
    plt.scatter(X_train[col1], X_train[col2], c=preds[:, index])
    plt.plot(new_sample[col1], new_sample[col2], 'ro', c='red', label='new_sample')
    
    plt.xlabel(col1)
    plt.ylabel(col2)
    plt.title(f"Label {model.classes_[index]}")
    plt.colorbar()
    plt.legend()

使用上面的函数在petal_length和petal_width绘图上绘制一个新样本,该样本的点被标记为0的概率着色。

plot_prediction(0, columns=['petal_length''petal_width'])

其他列也是如此,我们可以看到红点位于具有许多黄点的区域中!这就解释了为什么模型预测新样本的标签为0。这很酷,不是吗?

预测和评估测试数据

现在,让我们使用该模型来预测测试数据中的所有样本并评估其性能。开始使用混淆矩阵进行评估:

from sklearn.metrics import confusion_matrix, f1_score

predictions = model.predict(X_test)
confusion_matrix(y_test, predictions, labels=[0,1,2])
array([[13,  0,  0],
       [ 0, 15,  1],
       [ 0,  0,  9]])

我们还可以使用F1分数评估结果:

f1_score(y_test, predictions, average='micro')

结论

刚刚我们学习了如何通过绘制数据集来生成规则来标记数据。这并不是说你应该完全消除机器学习模型,而是在处理数据时加入某种人工监督。


精选文章

系列视频|Python网络爬虫与文本数据分析
语法最简单的微博通用爬虫weibo_crawler
hiResearch 定义自己的科研首页
大邓github汇总, 觉得有用记得star
multistop ~ 多语言停用词库
Jaal 库 轻松绘制动态社交网络关系图
addressparser中文地址提取工具
来自kaggle最佳数据分析实践
B站视频 | Python自动化办公
SciencePlots | 科研样式绘图库
使用streamlit上线中文文本分析网站
bsite库 | 采集B站视频信息、评论数据
texthero包 | 支持dataframe的文本分析包
爬虫实战 | 采集&可视化知乎问题的回答
reticulate包 | 在Rmarkdown中调用Python代码
plydata库 | 数据操作管道操作符>>
plotnine: Python版的ggplot2作图库
读完本文你就了解什么是文本分析
文本分析在经管领域中的应用概述  
综述:文本分析在市场营销研究中的应用
plotnine: Python版的ggplot2作图库
Wow~70G上市公司定期报告数据集
漂亮~pandas可以无缝衔接Bokeh  
YelpDaset: 酒店管理类数据集10+G  

    分享”和“在看”是更好的支持


good-icon 0
favorite-icon 0
收藏
回复数量: 0
    暂无评论~~
    Ctrl+Enter