首页 文章详情

面经|一文带你了解面试中的必问指标!

AI人工智能初学者 | 788 2021-05-13 16:13 0 0 0
UniSMS (合一短信)

常用任务的指标分析

你面试时的算法真题,尽在百面AI!

一. 机器学习分类指标汇总(含代码实现roc与auc)

常用指标

首先需要建立一个表,对于一个分类任务,我们预测情况大致如下面混淆矩阵所示:


预测为正样本预测为负样本
标签为正样本TPFN
标签为负样本FPTN

1. accuracy

accuracy指的是正确预测的样本数占总预测样本数的比值,它不考虑预测的样本是正例还是负例,考虑的是全部样本。

2. precision(查准率)

precision指的是正确预测的正样本数占所有预测为正样本的数量的比值,也就是说所有预测为正样本的样本中有多少是真正的正样本。从这我们可以看出,precision只关注预测为正样本的部分,

3. recall(召回率)

它指的是正确预测的正样本数占真实正样本总数的比值,也就是我能从这些样本中能够正确找出多少个正样本。

4. F-score

F-score相当于precisionrecall的调和平均,用意是要参考两个指标。从公式我们可以看出,recallprecision任何一个数值减小,F-score都会减小,反之,亦然。

5. specificity

specificity指标平时见得不多,它是相对于sensitivity(recall)而言的,指的是正确预测的负样本数占真实负样本总数的比值,也就是我能从这些样本中能够正确找出多少个负样本。

6. sensitivity(TPR)

7. P-R曲线

我们将纵轴设置为precison,横轴设置成recall,改变阈值就能获得一系列的pair并绘制出曲线。对于不同的模型在相同数据集上的预测效果,我们可以画出一系列的PR曲线。一般来说如果一个曲线完全“包围”另一个曲线,我们可以认为该模型的分类效果要好于对比模型。

如下图所示:

样本不均衡下的指标

背景:

在大多数情况下不同类别的分类代价并不相等,即将样本分类为正例或反例的代价是不能相提并论的。例如在垃圾邮件过滤中,我们希望重要的邮件永远不要被误判为垃圾邮件,还有在癌症检测中,宁愿误判也不漏判。在这种情况下,仅仅使用分类错误率来度量是不充分的,这样的度量错误掩盖了样本如何被错分的事实。所以,在分类中,当某个类别的重要性高于其他类别时,可以使用PrecisonRecall多个比分类错误率更好的新指标。

8. roc(Receiver Operating Characteristic Curve)

在实际的数据集中经常会出现类别不平衡现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间而变化。而在这种情况下,ROC曲线能够保持不变。同时,我们可以断言,ROC曲线越接近左上角,该分类器的性能越好,意味着分类器在假阳率很低的同时获得了很高的真阳率。

以下是一个ROC曲线的实例:

其中,该曲线的横坐标为假阳性率(False Positive Rate, FPR),N是真实负样本的个数,FPN个负样本中被分类器预测为正样本的个数,P是真实真样本的个数。其中,

举个例子,如果有20个样本的2分类,分类结果如下所示:

现在我们指定一个阈值为0.9,那么只有第一个样本(0.9)会被归类为正例,而其他所有样本都会被归为负例,因此,对于0.9这个阈值,我们可以计算出FPR0TPR0.1(因为总共10个正样本,预测正确的个数为1),那么我们就知道曲线上必有一个点为(0, 0.1)。依次选择不同的阈值(或称为“截断点”),画出全部的关键点以后,再连接关键点即可最终得到ROC曲线如下图所示。

其实还有一种更直观的绘制ROC曲线的方法,就是把横轴的刻度间隔设为,纵轴的刻度间隔设为N,P分别为负样本与正样本数量。然后再根据模型的输出结果降序排列,依次遍历样本,从0开始绘制ROC曲线,每遇到一个正样本就沿纵轴方向绘制一个刻度间隔的曲线,每遇到一个负样本就沿横轴方向绘制一个刻度间隔的曲线,遍历完所有样本点以后,曲线也就绘制完成了。

使用sklearn进行roc曲线绘制

>>> from sklearnimport metrics
>>> import numpy as np
>>> y = np.array([1122]) #假设4个样本
>>> scores = np.array([0.10.40.350.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr #假阳性
array([ 0. ,  0.5,  0.5,  1. ])
>>> tpr #真阳性
array([ 0.5,  0.5,  1. ,  1. ])
>>> thresholds #阈值
array([ 0.8 ,  0.4 ,  0.35,  0.1 ])
>>> #auc(后面会说)
>>> auc = auc = metrics.auc(fpr, tpr)
>>> auc
0.75

绘制曲线:

import matplotlib.pyplot as plt
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
         lw=lw, label='ROC curve (area = %0.2f)' % auc)
plt.plot([01], [01], color='navy', lw=lw, linestyle='--')
plt.xlim([0.01.0])
plt.ylim([0.01.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

所画图象如图所示:

9. auc(Area under curve)

auc指的是计算roc的面积。AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。

def AUC(label, pre):
  """
  适用于python3.0以上版本
   """

  #计算正样本和负样本的索引,以便索引出之后的概率值
    pos = [i for i in range(len(label)) if label[i] == 1]
    neg = [i for i in range(len(label)) if label[i] == 0]
 
    auc = 0
    for i in pos:
        for j in neg:
            if pre[i] > pre[j]:
                auc += 1
            elif pre[i] == pre[j]:
                auc += 0.5
 
    return auc / (len(pos)*len(neg))
 
 
if __name__ == '__main__':
    label = [1,0,0,0,1,0,1,0]
    pre = [0.90.80.30.10.40.90.660.7]
    print(AUC(label, pre))

当然,也可以使用公式来进行计算:

代码如下:

import numpy as np
def auc_calculate(labels,preds,n_bins=100):
    postive_len = sum(labels)
    negative_len = len(labels) - postive_len
    total_case = postive_len * negative_len
    pos_histogram = [0 for _ in range(n_bins)]
    neg_histogram = [0 for _ in range(n_bins)]
    bin_width = 1.0 / n_bins
    for i in range(len(labels)):
        nth_bin = int(preds[i]/bin_width)
        if labels[i]==1:
            pos_histogram[nth_bin] += 1
        else:
            neg_histogram[nth_bin] += 1
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(n_bins):
        satisfied_pair += (pos_histogram[i]*accumulated_neg + pos_histogram[i]*neg_histogram[i]*0.5)
        accumulated_neg += neg_histogram[i]

    return satisfied_pair / float(total_case)
 
 y = np.array([1,0,0,0,1,0,1,0,])
 pred = np.array([0.90.80.30.1,0.4,0.9,0.66,0.7])
print("----auc is :",auc_calculate(y,pred))

10. AUROC (Area Under the Receiver Operating Characteristic curve)

大多数时候,AUC都是指AUROC,这是一个不好地做法,AUC有歧义(可能是任何曲线),而AUROC没有歧义。

其余部分,与AUC一致。

二.  图像分割指标汇总

1. pixel accuracy (标记正确/总像素数目)

为了便于解释,假设如下:共有个类(从,其中包含一个空类活着背景),表示本属于类但是预测成类的像素数量。即,表示真正的正样本,而 表示被分别被解释成假正与假负。

其计算公式如下:

图像中共有类, 表示将第类分成第类的像素数量(正确分类的像素数量),表示将第类分成第类的像素数量(所有像素数量)
因此该比值表示正确分类的像素数量占总像素数量的比例。

对于而言,优点就是简单!缺点:如果图像中大面积是背景,而目标较小,即使将整个图片预测为背景,也会有很高的PA得分,因此该指标不适用于评价以小目标为主的图像分割效果。

2. MPA(Mean Pixel Accuracy)

其计算公式如下:

计算每类各自分类的准确率,再取均值!

3. MIou(Mean Intersection over Union)

计算两个集合的交集与并集之比,在语义分割中,这两个集合为真实值和预测值。

4. FWIoU(Frequency Weighted Intersection over Union)

MIou的一种提升,这种方法可以根据每个类出现的频率为其设置权重:

三. 目标检测指标汇总

主要是用到以下的指标:

  • : , 即各类别的平均值
  • : 曲线下面积,后文会详细讲解
  • 曲线: 曲线
  • 的检测框数量(同一只计算一次)
  • 的检测框,或者是检测到同一个的多余检测框的数量
  • : 没有检测到的GT的数量
  • : 计算两个集合的交集与并集之比
  • : 非极大值抑制

计算

要计算,首先需要计算的是.

对于单张图片,首先遍历图片中 对象,然后提取我们要计算的某类别的 ,之后读取我们通过检测器检测出的这种类别的检测框(其他类别的先不管),接着过滤掉置信度分数低于置信度阈值,也有的是未设置置信度阈值。将剩下的检测框按置信度分数从高到低排序,最先判断置信度分数最高的检测框与 是否大于阈值,若大于设定的阈值即判断为,将此标记为已检测(后续的同一个的多余检测框都视为,这就是为什么先要按照置信度分数从高到低排序,置信度分数最高的检测框最先去与阈值比较,若大于阈值,视为,后续的同一个对象的检测框都视为),小于阈值的,为。图片中某类别一共有多少个GT是固定的,减去TP的个数,剩下的就是FN的个数了

当有了值之后,我们就可以计算这一类别的。从而计算

  • 以前,只需要选取当个点时的最大值,然后就是这的平均值。
  • 及以后,需要针对每一个不同的值(包括0和1),选取其大于等于这些值时的最大值,然后计算曲线下面积作为值。
  • 数据集,设定多个阈值(,为步长),在每一个阈值下都有某一类别的值,然后求不同阈值下的平均,就是所求的最终的某类别的值。

计算

顾名思义,所有类的值平均值就是

四. 模型效率衡量

FLOPs(floating point operations)

假设卷积操作的实现是按照滑窗的形式,并且非线性函数是不消耗计算资源的。那么对于卷积核的为:

其中,是高,宽与输入特征的通道数, 是卷积核的宽度与长度,是输出通道数。同时,假设了输入输出的尺寸是一样的。

对于全连接层:

其中,是输入的维度,是输出维度。



往期干货


大家好,我是灿视,目前在合肥某AI企业,负责算法部门的工作。

我曾在19,20年联合了各大厂面试官,连续推出两版《百面计算机视觉》,受到了广泛好评,有效地帮助了同学们斩获了BAT等大小厂算法Offer。现在,我们继续出发,持续更新最强算法面经。

我曾经花了4个月,跨专业从双非上岸华五软工硕士,也从不会编程到进入到百度与腾讯实习。加我私信,与我分享你的困惑。


加我微信


good-icon 0
favorite-icon 0
收藏
回复数量: 0
    暂无评论~~
    Ctrl+Enter