


图4 代价累计结果



python test.py --dense_folder TEST_DATA_FOLDER --regularization '3DCNNs' --max_w 1152 --max_h 864 --max_d 192 --interval_scale 1.06
flag --dense_folder 要设定为scan10的地址。 flag –regularization表示正则化代价体的方式,MVSNet中使用的是3D卷积神经网络。 图片的大小可以按照GPU的大小变更参数,但是需要时32的整数倍(特征提取时2D神经网络要求图像是32的整数倍) Max_d 和interval_scale 建议先按照默认的要求,在使用自己的数据时,我们会给出调整的方式
安装fusible
运行代码
python depthfusion.py --dense_folder TEST_DATA_FOLDER --fusibile_exe_path FUSIBILE_EXE_PATH --prob_threshold 0.3






camera.txt是保存相机内参数的文件 images.txt是保存图片外参数和图片二维特征与三维空间点对应信息的文件 points3D.txt是保存三维空间点在世界坐标系下坐标、RGB值以及在各个影像上的轨迹(track)
python colmap2mvsnet.py –dense_folder our_dense_folder –max_d XXX –interval_scale XXX
Flag –dense_folder 需要以我们的dense_folder作为地址,里面必须包含sparse文件夹 --max_d 表示,最大估计的离散深度采样区间数,因为MVSNet是按照平面扫描原理进行深度估计的,所以深度是离散采样的,一般我们设定为192个深度采样区间。 --interval_scale表示每个深度区间的大小,默认为1.06(mm)。 深度估计范围:已知深度最小值depth_min,则深度最大值满足:

注意:我们需要估计自采数据的深度范围,已保证在深度采样区间内,能对目标场景进行有效的深度估计,举个例子,如果自采数据的深度范围为45cm – 80cm,那么我们用于深度估计的区间范围应该是35cm,从45 – 80cm。此时如果我们设定的深度区间为0 – 35cm,那么估计出来的深度图肯定是错误的。所以对于自采数据,大家需要尝试不同的深度区间,以找到合适的取值范围。 在估计自采数据的深度范围时,需要修改Yaoyao的代码,需要的朋友们可以私戳笔者,获取修改之后的代码。

[1] Yao Yao, Luo Zixin, Li Shiwei, Fang Tian, Quan Long. MVSNet: Depth Inference for Unstructured Multi-View Stereo. European Conference on Computer Vision (ECCV)
[2] Scharstein D , Szeliski R . A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3):7-42.
[3] Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: Unifying feature and metric learning for patch-based matching. Computer Vision and Pattern Recognition (CVPR) (2015)
[4] Collins R T . A Space-Sweep Approach to True Multi-Image Matching[C] Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on. IEEE, 1996.
[5] Yang R , Pollefeys M . Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware[C] 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. IEEE, 2003.
[6] Furukawa Y , Hernández, Carlos. Multi-View Stereo: A Tutorial[J]. Foundations & Trends in Computer Graphics & Vision, 2015, 9(1-2):1-148.
[7] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2015)

重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿 
▲长按关注公众号

▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款 
圈里有高质量教程资料、可答疑解惑、助你高效解决问题 觉得有用,麻烦给个赞和在看~ 

