【新智元导读】让机器人研究走向大众。加州大学伯克利分校和谷歌大脑的研究人员联合打造低成本机器人学习平台ROBEL,支持机器人实验扩展和强化学习,兼具稳健性、灵活性和可重复性。该平台现已发布至开源社区。快来新智元 AI 朋友圈参与讨论吧~
ROBEL由D’Claw和D'Kitty组成,D'Claw是一个有三只手臂的机械臂型机器人,可以帮助学习灵巧的操作任务.

D'Kitty是一个有四条腿的机器人,可以帮助学习灵活的腿部运动任务。

这个机器人平台是低成本的,模块化的,易于维护,足够强大,能够支持从零开始的硬件强化学习。


针对这些基准任务,研究人员评估了几种深度强化学习方法(on-policy, off policy, demo-accelerated, supervised),评估结果和最终策略被作为baseline包含在软件包中以供比较。具体的任务细节和基线性能请查看论文。
在不同实验室开发的两个真实D'Claw机器人执行任务的训练性能
重要的是,D'Claw平台是高度模块化的,而且具备高度可重复性,便于进行扩展实验。通过扩展设置,我们发现多个D'Claws可以通过共享经验更快地对任务进行集体学习。


总之,ROBEL平台成本低、性能强大、可靠性高,可以满足新兴的基于学习范式的需求,这些范式需要高度的可扩展性和弹性。我们已经将ROBEL发布到开源社区中,相信可以推动相关研究和实验的多样性的提升。 要使用ROBEL平台和ROBEL基准测试,请访问roboticsbenchmarks.org
参考链接:https://ai.googleblog.com/2019/10/robel-robotics-benchmarks-for-learning.html